Semiconductor Device Processing & Measuring Lab
National Tsing Hua University, Department of Engineering and System Science
High work function metal gate stacks
(a) Molybdenum and Titanium based high work function metal gates
Aggressive scaling of channel length and gate oxide thickness in a conventional transistor aggravates the problems of poly-silicon (poly-Si) gate depletion, high gate resistance, high gate tunneling leakage current, and boron penetration into the channel region. As a result, there are immense interests, in metal gates and alternative gate dielectrics with higher permittivity [1]. At this moment, metal gate can greatly reduce the gate sheet resistance, eliminate boron penetration problem, and the most important, eliminate the gate depletion [2]. The traditional poly-silicon gate electrode can make a Fermi-level adjustment by either donor or acceptor implantation. However, the adjustment of the work function (WF) a metal gate is not easily achievable. The required work functions of metal gates for N-channel and P-channel MOS devices are around 4.1–4.2 eV and 4.8–5.0 eV [3].
在閘極尺度與介電層厚度不斷微縮的趨勢下,傳統的多晶矽閘極面臨著嚴重的問題,包括:
-
多晶矽閘極空乏層(Poly depletion)。在介電層厚度達到1nm左右時,這個問題變得特別顯著,它會等效地使EOT變大。
-
硼穿透(Boron penetration)。PMOSFET在閘極摻雜硼以達到所需的閘電極功函數,但經過高溫製成後硼的擴散及穿透問題顯得嚴重,它會造成臨界電壓的不穩定,影響元件的可靠度。
-
高片電阻值。片電阻值過高會提高元件的功率損耗。
-
Remote charge scattering (RCS),如圖1.1。此問題會使反轉層內的電荷遷移率下降,進而影響元件的驅動電流。
基於以上幾點傳統多晶矽閘極面臨的問題,金屬閘極在元件尺度微縮的需求下,提供了解答。大多數的金屬閘極皆具備有低的片電阻值;更重要的是,以金屬做為閘電極材料幾乎不會有閘極空乏層及RCS的問題;而藉由各種的功函數調變技術,可以不需要在閘極摻雜硼,也解決了硼穿透的問題。
(b) Process study of HfO2-based high-k gate dielectric for MOS devices.
The gate leakage current in metal-oxide-semiconductor (MOS) device is getting high with the scaling down of gate oxide thickness. High-k gate dielectric has been proposed to replace SiO2 for MOS device with effective oxide thickness (EOT) below 1.5 nm for suppressing the gate leakage current [1]. The dielectric constant (k) of the HfO2 dielectric, which is about 18~20 [2], is not high enough to reduce the EOT value to below 1 nm for MOS devices. Thus, some exotic higher-k dielectrics have been proposed to replace HfO2.
VLSI製程技術持續以元件微縮為目標,在CMOS等效氧化層厚度上以被要求微縮至1nm以下。然而,由於以二氧化矽做為介電層微縮到1.5nm以下會導致嚴重的漏電流問題,為了元件持續微縮,改採用高介電常數材料取代二氧化矽做為介電層,但高介電材料與矽基板為非理想接面、界面氧化層的增生使EOT微縮不易與載子遷移率下降,皆是使用高介電材料介電層所帶來的一些新挑戰。